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Abstract. This paper addresses the minimization of the product of p convex functions on a convex set. 
It is shown that this nonconvex problem can be converted to a concave minimization problem with p 
variables, whose objective function value is determined by solving a convex minimization problem. An 
outer approximation method is proposed for obtaining a global minimum of the resulting problem. 
Computational experiments indicate that this algorithm is reasonable efficient when p is less than 4. 
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1. Introduction 

The purpose of this paper is to propose a practical algorithm for solving a 
nonconvex minimization problem: 

minimize P I-[ f,(x  
j=l (1.1) 

subject to x E X ,  

where f j  : Rn---~ R 1, j = 1, . . . , p are nonnegative convex functions on a convex 
set X C RL It is well known [10] that the product of convex functions need not be 
convex and thus (1.1) belongs to a class of global optimization problems. At  the 
same time, (1.1) has many practical applications in such areas as microeconomics 
[5], VLSI chip design [16], bond portfolio optimization [9], or multicriteria 
optimization problems [4] to name only a few. 

For example, to solve a variant of multi-objective bond portfolio optimization 
model [9], we have to minimize the product of 2 - 4 affine and/or  linear fractional 
functions over a polytope defined by m linear equations and n non-negative 
variables where m ~< 50 and n is several hundreds. According to [8], a standard 
reference in multi-objective optimization problems, the number of objectives in a 
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majority of real world problems is at most seven and usually less than four. Thus 
an efficient algorithm for solving (2.1) for p up to 4 is of primary importance in 
the field of multi-objective optimization. 

In [10], the authors proposed a parametric simplex algorithm for obtaining a 
global minimum of a special class of (1.1), in which p = 2 and fj's are affine. In a 
subsequent paper [14], we proposed a parametric successive underestimation 
method for p = 2 with nonnegative convex functions f/s .  As shown in [10, 14], the 
proposed algorithms provide us with very efficient methods for solving these 
special Problems. 

The remarkable success of "parameterization" techniques for linear and convex 
multiplicative programming problems motivated us to extend them to yet another 
class of global optimization problems. Readers are referred to [23, 12, 22] for the 
recent progress in these directions. 

In this paper, we develop a practical algorithm for a more general and more 
difficult class of global optimization problems by extending the 
"parameterization" technique referred to above. 

In Section 2, we will show that (1.1) can be converted to a concave minimiza- 
tion problem in a p-dimensional space by introducing p auxiliary variables 
(parameters). In Section 3, we will propose an outer approximation algorithm for 
obtaining a globally e-optimal solution of (1.1) in finitely many steps, by 
exploiting the special structure of the p-dimensional problem. Results of compu- 
tational experiments for p up to five are presented in Section 4, which dem- 
onstrates that our algorithm is practical for the problem (1.1) up to at least p = 4. 

2. Definition of the Master Problem 

Let us consider a nonconvex minimization problem defined below: 

(P)  P minimize go(X) = l-I fj(x) 
i=1 (2.1) 

subject to gi(x) <- O, i = 1 , . . . ,  m ,  

where ~-: R"--* R 1, j =  1 , . . . ,  p and &: R"---> R 1, i = 1 , . . . ,  m are convex func- 
tions. We assume in the sequel that the feasible region: 

X = {x ~ R" I gi(x) <~ O, i = 1 , . . . ,  m} (2.2) 

is nonempty and bounded and that 

fj(x)>~O, V x E X ,  j = l  . . . .  , p .  (2.3) 

If there exists some fj(x) which attains its lower bound zero at x j E Z, then x j is 
obviously an optimal solution of (P). This can be checked by solving p convex 
minimization problems: 

minimize{fj(x) l x ~ X } ,  j = l , . . . , p .  (2.4) 
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Thus, we can rewrite the assumption (2.3) without loss of generality as follows: 

f j ( x ) > 0 ,  V x E X ,  j = l , . . . , p .  (2.5) 

Let us introduce a vector of auxiliary variables ~ = (~1, �9 �9 �9 ~p)' and define the 
following master problem: 

P 

minimize G(x, ~)= • ~jfi(x) 
j = 1  

subject to x E X ,  (2.6) 
P 

1-I e > 0 .  
]=1 

THEOREM 2.1. Problem (2.6) has an optimal solution (x*, ~*) such that x* is 
an optimal solution of (P). Also, the following relations hold: 

G(x*, ~*) = p{/ go(x*) , (2.7) 

s  j = l , . . . , p .  (2.8) 

Proof. By the assumption (2.5), the value of min{Ef= 1 fj(x)~j [ IljP=l s 1, 
t> 0} is finite for any x E X. Therefore, (2.6) must have an optimal solution 

(x*, ~*) because X is assumed to be nonempty and bounded. 
Let ~(x) argmin{gP=x fj(x)~j[ p >- = IIj= 1 ~ j . ~ l , ~ > O } .  Then the local Kuhn- 

Tucker conditions imply that there exists a constant a(x)>0 satisfying the 
following system: 

P 

(2.9) 
~ ~j(x) = 1.  

(Note that each ~j(x) cannot be zero.) It follows from (2.9) that 

2 fj(x)~j(x) = p fj(x). (2.10) 
j = l  

Hence, solving (2.6) amounts to solve the original problem (P). Both (2.7) and 
(2.8) immediately follow from (2.9) and (2.10). [] 

Let us denote 
�9 P l 

~j = mm{Vr-g0( x ) I l = 1 . . . .  , p} / s  j = 1 . . . . .  p ,  

where xJ's represent optimal solutions of the respective problems (2.4). 

(2.11) 

COROLLARY 2.2. 

l:~j 
j = l  . . . .  , p .  (2.12) 
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Proof. The second inequality is derived from (2.8) and the following relations: 

go(x*) < g 0 ( x g ,  j = 1 . . . .  , p ,  

fj(x*)~>f/(xi), j = l , . . . , p .  

The first follows from 
P 

le j  l = 1 

Let us consider a subproblem of (2.6): 
P 

minimize G(x; ~)= ~. ~Ji(x) 
e ( o  J=' 

subject to x E X ,  

where ~ > 0 is a constant vector. P(~) is a convex minimization problem for any 
> 0. Let x*(~) be an optimal solution of P(~) and let 

h(~)-~ G(x*(~:); if). (2.13) 

Then (2.6) can be reduced to the following problem with p variables: 

minimize h ( f )  

e (2.14) 
(MP) subject to l - [~j>11,  ~ t>0 .  

]=t  

THE OR EM 2.3. h is a concave function over ~ > 0  and has the following 
properties: 

h ( A ~ ) = ) t h ( ~ ) ,  VA~>O, (2.15) 

h(~l)<~h(~ 2) if 0<r162  2. (2.16) 

Proof. Choose arbitrary ~1, ~2> 0 and let 
k x =argmin(G(x ;~k)  l x E X } ,  k = l , 2 ,  
3 x = argmin{G(x; A~I + (1 - )t)~ 2) Ix E X } ,  

where )t ~ [0, 1]. Then we have 
P 

h(A~ 1 + (1 - 2t)#:) = Z ( ; t ~  + (1 - A ) ~ ) f j ( x  3) 
j = l  

P P 

: ~ Z ~ f ] ( x 3 )  q- ( 1 - - , ~ )  Z ~ f j ( x 3 )  
j = l  1=1 

p P 

~ E t ~ ( x ' )  + (1 - A) Y, t~f j (x  2) 
1=1 j= l  

= Ah(~ 1) + (1 - 1)h(~2).  

(2.15) and (2.16) are obvious. [] 
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Let us denote by N the feasible region of (MP), i.e., 

N =  S E R  p 1~ $j~>1,$>~0 . (2.17) 
]=1 

COROLLARY 2.4. There exists a globally optimal solution of (MP) among the 
boundary points of ~. 

Proof. Obvious from Theorem 2.3. 

3. Outer Approximation Algorithm for the Master Problem 

Let us proceed to the algorithm for solving the master problem (MP). By 
Corollary 2.2, a globally optimal solution ~* of (MP) is contained in a p- 
dimensional cube: 

~ o = ( ~ R e  I ~<~<$} ,  (3.1) 

where 

{~ :(1/Ilt~l ~," " " ,l/IIl~p ~) t, 
(~I , ' ' ' ,  ~p)t (3.2) 

and ~j's are defined by (2.11). Thus, (MP) is equivalent to the following: 

minimize h(~) (3.3) 
subject to ~ E ~ N ~ 0 .  

Since E N N0 is a nonempty, convex and compact set, it is well known [6] that ~* 
can be obtained by applying an outer approximation method. Fortunately, we can 
solve (MP) more efficiently by using its special structures stated in the previous 
section. 

Let 

(P0) minimize h(~) (3.4) 
subjectto ~ E =0 

be the initial relaxed problem. By (2.16) of Theorem 2.3, a globally optimal 
solution ~o of (P0) is immediately obtained, i.e., 

~ = 1/1-[  ~',, j = l , . . . , p .  (3.5) 
/ l~j  

Assume that we obtain the following kth relaxed problem: 

(Pk) minimize h(~) 
subject to ~ E N k ,  k = l , 2 , . . .  (3.6) 

where 

= D D N Cl (3.7) - o  =-k -=o. 

Let ~ be an optimal solution of (P~). 
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LEMMA 3.1. 

h(~k)<~h(~*)~h(~k)-- y = l  se~"  ( 3 . 8 )  

k p p k Proof. Since ~/Qc-Hj= 1 ~j E E, we have 

h ( ~ , ) < h  ~k p ~ . 
. / ]=1  

The second inequality of (3.8) is derived from this and (2.15) of Theorem 2.3. 
The first inequality is obvious. [] 

For each s let uS define a function: 

lk(~) = P ~  ~ ~ ~ j / ~ - - p .  (3.9) 
'/=1 j = l  

k p p k Note that lk(~ ) = 0 is a supporting hyperplane of E at ~ /~V/-ff~=l ~j and that 

l k (~k)<o,  Ik(~)~O,  V ~ E ~  (3.10) 

k if ~ ~ '~ .  By using Ik, the kth cut L k can be defined as follows: 

Lk = { ~ E RP I lk(~)>~0} �9 (3.11) 

Figure 1 shows the relation between Lk'S and the feasible region ~, of (MP). 
We are now ready to construct the outer approximation method for (MP) with 

a given tolerance 0 ~< e < 1: 

ALGORITHM OAM 
Step O. Let k = 0. 
Step 1. Compute an optimal solution ~k of a relaxed problem (Pk). 
Step 2. If 

P 

j = l  

then stop. Otherwise, generate a cut L k from (3.9) and (3.11) and let 

= "  A L  k k = k + l  ~'~k+ 1 ~ k  ~ 

Return to Step 1. [] 

T H E O R E M  3.2. I f  e > 0, Algorithm OAM terminates after finitely many itera- 
tions and yields an approximate solution: 

~ ' =  ~k/P~.I~, ~ : ,  (3.12) 
j = l  
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Fig. 1. The relation between the cuts and the feasible region. 

which satisfies 

- ~ h ( ~ ' )  ~< h ( ~ * )  ~< h ( ~ ' ) .  (3.13) 

I f  e = 0, O A M  generates a sequence ~ ,  k = O, 1, 2 , . . . ,  every accumulation point 
of  which is a globally optimal solution of (MP) .  

Proof. B y  L e m m a  3.1, we have  

~ ~h(~') ~ h(~:*) ~ h(~:'). = 

e ~ i> 1 - e must  hold.  T h e r e f o r e ,  ~" satisfies I f  O A M  te rmina tes ,  then  llj= I 

(3.13).  
N o w  assume  tha t  O A M  is infinite. T h e n  the re  exists a posi t ive cons tan t  0 and  a 

s u b s e q u e n c e  Eke, kq E (0, 1, 2, . . .} such tha t  

P 
1 - [-I ~kq > 0 , V q .  (3.14) 

]=1 
Since all ~k's are  con ta ined  in the compac t  set  g 0 ,  we m a y  assume tha t  the  
s e q uence  ~kq, kq E {0, 1, 2 , . . . }  converges  to ~. Le t  

= j=l ~ - P "  (3.15) 
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Then 

lim l k (~ kq+l) ~--- ~im Ikq(~ kq) = l(~)>>-0 
q--*oo q 

b e c a u s e  ~kq+ 1 ~ Ekq+l C ~kq f'] Lkq for any q. Hence, by (3.15) 

t ( h - p  _ g j -1  I>0, 

which contradicts (3.14). If �9 > 0, therefore, OAM must terminate after finitely 
many interactions. If �9 = 0, then 

h ( ~ )  = ~im h ( r  kq) ~ h ( r  

because h(~  gq) ~ h (~* )  for any q. [] 

Denote by V ( E k )  the vertex set of ~'k- Since (Pk) is a concave minimization 
problem (Theorem 2.3), there exists a globally optimal solution ~k of (Pk) among 
V(=,k),  i.e., 

~k = argmin{h(~) I ~ E V(Ek) } . (3.16) 

Therefore, ~k can be computed by solving the convex program P(~) for every 
�9 , ~ VC~ ~ E V ( ~ k ) .  For each k = 1, 2 , . .  we can compute V(mk)  by ~-k- lJ  and Lk_ 1. 

Let V k be the vertex set which is generated by adding the cut Z/~_ 1 to ~k- l"  Then 

V ( E k )  = V k U { ~ ~ V(=,Ek_~) [ ~ E Lk_~} . (3.17) 

Several methods are available for finding V k . Refer to [6] for the details. 

4. Computational Experiments 

We report the results of computational experiments of Algorithm OAM presented 
in the previous section. We solved examples belonging to either one of the 
following two subclasses of (P): 

minimize P l-[ ct, x 
j = t  (4.1) 

subject to A x  >l b , x >l O , 

minimize q Co(X)" 1-i [c'jx + x' diag(dj)x] 
s=l (4.2) 

subject to A x  >- b , x >10 , 

where A ~ . . . .  R" and dj R ". R , b ~ R , cj E E All data were randomly generated, 
whose ranges are [0,100]. We employed the method proposed in [21] to find new 
vertices V k generated by adding the cut Lk_ ~ to Ek-l" For each ~ E V k the 
subproblems P(~)'s of (4.1) and (4.2) are a linear program and a convex 
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quadrat ic  p rogram,  respectively. We applied the revised simplex method to the 

fo rmer  while the latter was solved by the reduced gradient method.  The tolerance 

was always fixed at E = 10 -5 and ten examples were solved for each size of  the 

problems.  The programs were coded in C language and tested on a SUN4/75 
workstat ion.  

Tables  I and I I  show the results for (4.1) when the size o f p  was fixed at 3 and 

4, respectively. The average CPU time (and its standard deviation) required by 
O A M  is listed. They also contain the average number  of  cuts and vertices 

genera ted  in the course of computat ion.  The number  of vertices corresponds to 
that  of subproblems solved for each example.  Table I I I  shows the results for (4.1) 

when (m, n) = (20, 30) and the size of  p ranges from 2 to 5. The results for (4.2) 
when q = 2 and q = 3 are listed in Tables IV and V, respectively. 

We see f rom these tables that Algori thm O A M  is very sensitive to the size of p.  
The  number  of cuts and vertices generated throughout  computat ion sharply 

increases as a function of p.  This is partly due to the inefficiency of the 
implementa t ion  for finding vertices V k . However ,  it should be noted that these 

figures increase slowly as the size of (m, n) gets larger. It  is also worth noting that 
the number  of cuts for (4.1) and (4.2) are quite similar (when p = 4 and q = 3, 

Table 1. Results for (4.1) when p = 3 

m 80 100 100 120 120 150 150 200 
n 100 100 120 120 140 140 160 180 

Average CPUtime in seconds ~tandard deviation) 
43.98 59.12 115.25 178 .57  181 .43  381 .21  427.02 914.09 
(9.05) (17 .80)  (28.02)  (43.13)  (41.12)  (93.80)  (127.63) (129.88) 

Av. # of cuts (s.d.) 
41.8 38.3 46.9 47.5 45.5 46.1 46.1 42.5 
(5.98) (4.67) (12 .51)  (7.47) (7.23) (9.98) (9.67) (3.75) 

Av. # of vertices (s.d.) 
176.5 159.0 200.0 204.9 197.1 200.4 200.0 180.3 
(30.91) (23.14)  (61.42)  (37.07)  (36.99)  (46.86)  (50 .55)  (19.29) 

Table II. Results for (4.1) when p = 4 

m 50 50 60 80 100 100 120 
n 40 60 80 100 100 120 120 

Av. CPU time in seconds (s.d.) 
49.05 95.05 155.10 330.55 524.49 617.51 1154.83 
(46.44) (32.49) (66.54) (101 .87)  (210.27)  (141.65)  (381.51) 

Av. # of cuts (s.d.) 
77.9 81.9 86.8 100.1 101.5 98.5 99.8 
(21.60) (11.41) (15.09) (17.84) (24.62) (13.68) (18.65) 

Av. # of vertices (s.d.) 
983.7 1060.6 1153.8 1386.0 1414.7 1370.6 1385.3 
(365.13) (199.37)  (258.10)  (311.34)  (422.30)  (251.71)  (327.60) 
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Table III. Results for (4.1) when (m, n) = (20, 30) 

p 2 3 4 5 

Av. CPU time in seconds (s.d.) 
0.46 1.27 14.21 1170.36 
(0.05) (0.25) (10.46) (950.53) 

Av. # of cuts (s.d.) 
10.1 37.4 62.8 118.3 
(3.78) (4.20) (12.66) (19.30) 

Av. # of vertices (s.d.) 
19.2 152.5 733.2 5406.2 
(7.56) (20.42) (207.12) (1585.29) 

Table IV. Results for (4.2) when q = 2 

m 50 50 60 80 100 100 120 
n 40 60 80 100 100 120 120 

Av. CPU time in seconds (s.d.) 
25.12 100.61 239.44 659.80 685.04 1268.57 1801.33 
(25.44) (71.23) (88.88) (532.53) (303.05) (680.56) (1136.87) 

Av. # of cuts (s.d.) 
34.6 45.5 43.1 43.7 43.0 52.7 51.4 
(8.62) (19.41) (12.51) (10.63) (14.72) (10.74) (17.60) 

Av. # of vertices (s.d.) 
140.7 192.9 181.9 185.3 181.3 226.9 222.6 
(40.71) (99.68) (63.14) (50.54) (70.93) (51.36) (87.26) 

Table V. Results for (4.2) when q = 3 

m 30 30 50 50 60 
n 20 40 40 60 80 

Av. CPU time in seconds (s.d.) 
53.29 230.57 716.78 1667.11 3089.74 
(21.43) (152.24) (491.19) (971.76) (1485.14) 

Av. # of cuts (s.d.) 
69.3 93.6 91.1 109.1 101.3 
(12.84) (27.52) (13.63) (26.09) (23.39) 

Av. # of vertices (s.d.) 
829.1 1234.2 1194.6 1505.6 1352.6 
(199.55) (473.77) (236.40) (439.97) (378.39) 

r e spec t ive ly . )  This  impl ies  tha t  the  to ta l  c o m p u t a t i o n a l  t ime  is d o m i n a t e d  by  tha t  

n e e d e d  for  solving the  convex  p r o g r a m ,  i .e . ,  the  s u b p r o b l e m  P ( ~ ) .  

W e  c o n c l u d e d  f rom this t ha t  ou r  a lgor i thm is r e a s o n a b l y  efficient  w h e n  p is less 

t h a n  4. W h e n  p is ove r  5, we n e e d  m o r e  efficient  p r o c e d u r e s  for  f inding V k [3] and  

for  so lv ing  the  a s soc ia t ed  convex  p r o g r a m  P ( ~ ) .  
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